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Saving for the future: Don’t leave it too late! 
 
1. Introduction 
Issues relating to personal finance 
appear both in the national news and in 
academic journals. The monthly 
announcement of the Bank of England 
base rates, consumer debt, house 
repossessions and pensions regularly hit 
the headlines.  
 
One of the most important financial 
decisions facing young adults is planning 
for the future. Yet research conducted 
by the Aegon UK, a provider of life 
insurance and pension products, in 
summer 2007 found that 9.6 million 
people in the United Kingdom have no 
long-term savings plan or provision for a 
pension.1 The Report talks of a ‘reality 
gap’ between what people expect later 
in life and what they are actually saving 
for. 
 
Of course, part of the reason for the 
‘reality gap’ is that the future is exactly 
that, the future! But, it is probably true 
that many people are unable to perform 
basic financial calculations. Yet, it is 
possible to do the relevant calculations 
using an inexpensive scientific calculator 
in seconds. If one uses the properties of 
the exponential constant e it is a very 
easy task to make informed financial 
decisions. This is the objective of this 
paper.  
 
2. How much are we saving? 
In a textbook you will find the saving 
ratio defined as the proportion of 
disposable income that is not consumed. 
If you delve into the National Accounts 
you will find that the saving ratio is 
calculated as the proportion of 
household resources not consumed.  
This is because in preparing the National 
Accounts net contributions to both 
private and state pensions are 

 
1 Further details can be found in the press 
release of 30 August 2007 available at 
http://www.aegon.co.uk/media/press_releases/p
r20070830.htm 
 

deducted. But, if a household makes a 
net contribution to a private pension 
they are make a long-term savings 
decision. Hence, net contributions to 
private pension funds are added to 
disposable income to create an income 
measure known as household resources. 
 
In the second quarter of 2007 the 
household resources measure was put 
at £224.03 billion. Of this £217.19 
billion was consumed, leaving saving of 
£6.84 billion. This left the saving ratio at 
just 3.1%. Reference to Chart 1 shows 
this to be historically low; the historic 
low of 2% was actually in the preceding 
quarter. The average proportion of 
household resources saved between 
1963Q1 and 2007Q1 is 7.7% (indicated 
on the chart). 
 
Chart 1: Household savings ratio, % 
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Source: Table 2.5, Economic and Labour Market 
Review, Office for National Statistics 

 
3. Effective interest rate 
When financial products are advertised 
you will hear or see reference to the 
Annual Percentage Rate.  This is the 
effective interest rate designed to allow 
consumers to compare more readily 
across financial products.  
 
To see this consider the effective 
interest rate on a saving product 
compounded n times a year. If the 
yearly interest rate is r, it is credited as 
r/n on each of the n occasions. After 1 
year the sum will have increased by the 
factor  

(1) n

n
r )1(   
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Hence, the APR or effective interest rate 
is  

(2) 1)1(  n

n
r  

 
If a yearly rate of 6% is compounded 
every month the capital will increase 
over 1 year by a factor of 1.0617.  This 
means the effective interest rate is 
6.17%. 
(3) 0617.1)12

06.01( 12   

 
If a sum P is invested for 1 year, with a 
yearly rate of interest r compounded n 
times, the final value will be 
(4) n

n
rPV )1(    

 
If, however, the sum is invested for 2 
years with the same rate of interest and 
frequency of compounding, its final 
value will be 

(5) nn

n
r

n
rPV )1()1(    

We can write (5) as  

(6) n

n
rPV 2)1(   

 
We can generalise the solution to (6) so 
as to find the final value of a lump sum 
P invested for t years with a yearly rate 
of interest r compounded n times. This 
will be 

(7) nt

n
rPV )1(   

 
4. Continuous compounding 
Consider now the frequency with which 
interest is compounded. Interest could 
be compounded weekly, daily, or even 
more frequently. As the frequency of 
compounding increases, the effective 
interest increases, but ever more slowly. 
The theoretical extreme is known as 
continuous compounding.  
 
While a theoretical nicety, continuous 
compounding has some neat 
implications for the mathematics of 
finance. To see this, we introduce the 
exponential constant. The exponential 
constant e is approximately 
2.718281828. xe  can be defined at the 
limit where n approaches infinity as  

(8) nx

n
xe )1(   

This is particularly relevant to the world 
of finance if one bears in mind that the 
effective interest rate or APR of a yearly 
rate r compounded n times a year is 
given by (2). It means that if we 
compound an annual rate r continuously 
the APR is given by  
(9) 1re . 
 
If the annual rate is 6% then the APR is 
6.184%. 
(10) %184.606184.0106.0 e  
 
We can rewrite the final value of a lump 
sum invested for t years under 
continuous compounding as 
(11) rtPeV   
 
5. Definite integration and savings 
plans 
So far we have applied continuous 
compounding and the properties of the 
exponential constant to a lump sum 
investment. But, in planning for the 
future or for retirement individuals may 
consider putting in a place a savings 
plan to which they make regular 
contributions.  
 
We will consider savings plans where £A 
is paid continuously during the year. By 
assuming continuous compounding we 
show how to employ a technique known 
as definite integration using the 
exponential constant. But, firstly we 
consider the properties of the 
exponential constant.  
 
The slope of the graph of an exponential 
function is the same as the value of the 
function at that point. The slope of a 
graph of a function is called the 
derivative of the function. The derivative 
is a measurement of how a function 
changes when the values of its inputs 
change.  
 
The process of finding a derivative is 
called differentiation. When one 
differentiates xe  one obtains xe . Hence, 
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symbolically, if xey   the derived 
function is 
(12) xe

dx

dy
  

In other words, the function is 
unchanged by differentiating it.  
 
Applying the chain rule we also have the 
result that if rxey   then the derived 
function is 

(13) rxre
dx

dy
  

 
Integration is the process of identifying 
the function that differentiates to a 
derived function. More simply, it is the 
reverse of differentiation. Therefore, if 
one integrates xe  the function is also 
unchanged. Hence, symbolically, 
(14) xx edxe    

To integrate rxe  we must also do the 
reverse of differentiation so we now 
divide by r rather than multiply so 
(15) 

r

e
dxe

rx
rx   

 
From the property of any index, 10 e . 
The reason this is important for 
problems involving time is that almost 
always the start time is designated time 
0, whatever the actual start year. 
 
We are now in a position to evaluate a 
definite integral with 0 as the lower 
limit. This can be used to calculate the 
factor by which we multiply the annual 
£A paid continuously into a savings plan 
so as to determine its final value.  
 
Assume an interest rate of r, which is 
compounded continuously, and an upper 
limit for our integral T, which is the 
length of the saving plan. 
(16) 

Trx
T rx

r

e
dxe

0
0 








  

Solving (16) gives   

(17) 
r

e
r

e rTr 0**

   

Since 100*  eer , this simplifies to 

(18) 
r

e Tr 1*   

 

To illustrate, assume that the interest 
rate, r, is 0.06 and that the savings plan 
runs for 15 years. This is the upper limit 
of the definite integral. We now 
substitute the values of r and T into (18) 

(19) 
06.0

115*06.0 e
= 24.33 to 2dp 

The value of a plan where the annual 
amount saved is £A, will be worth nearly 
24 times £A after 15 years. 
  
If an annual value of £1,200 is saved 
continuously for 15 years at an interest 
rate of 6% is £1,000, then the final 
value of the savings plan can be 
determined by the definite integral 

(20)  
15

0

06.0200,1£ dxeV x  

In solving (20) we find the final value of 
the plan V after 15 years is  

(21) 192,29£
06.0

1
200,1£

15*06.0








  e
V  

 
Savings plans never actually involve 
continuous compounding or 
accumulation. Yet, while theoretical 
niceties, they enable us to undertake 
financial calculations on a calculator in 
seconds. Importantly, they provide for 
excellent approximations to more 
‘realistic’ financial calculations.  We can 
show this by slightly amending our 
current example.  
 
Assume our individual saving £100 per 
month for 15 years at a constant 
interest rate of 6% p.a. compounded 
monthly. This ‘realistic’ plan has 180 
monthly payments with interest credited 
as 0.06/12 each month. The final value 
of the plan can be written as 
(22) 1802 )05.1(100...)005.1(100)005.1(100    
 
We now have a geometric progression. 
Each term is the previous term 
multiplied by 1.005. This is the common 
ratio. The first term in the progression, 
100*1.005, is the scalar. The 
summation of the n terms, Sn, can be 
found by applying the following general 
formula, where b is the scalar and y the 
common ratio  
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(23) 
y

yb
S

n

n 



1

)1(  

 
If we now substitute in for b and y, we 
find that the value of (22) is equal to 
£29,227 to the nearest £. 

(24)  227,29£
005.11

)005.11)(005.1(100 180




  

 
The difference between the estimated 
final values is £35. When expressed 
relative to the final value of the 
‘realistic’ plan, the difference amounts 
to (35/29,277)*100 or just 0.12%. 
 
6. Planning for the future 
The Pensions Service2 provides 
information about pensions and, in the 
current context, planning ahead for the 
future. In addressing the question as to 
when to start planning for retirement, 
the Pensions Service offers the following 
advice:  
Like many other people you might feel 
that retirement is too far away to think 
about. Maybe you think you can’t afford 
to save for the future when there are 
so many other things you have to pay 
for every day. But the truth is the 
earlier you start saving for retirement 
the more money you’re likely to have 
to enjoy yourself.3 

 
Is this sound advice or simply 
scaremongering? A simple example 
amply demonstrates the relevance of 
the Pension Service’s advice. 
 
Consider a 23 year old who has just left 
university and plans to save £1,000 per 
year for 45 years to provide for her 
pension needs. Assume the return is 
estimated at 7% per year. The final 
value of this savings plan can be 
determined by the definite integral 
(25) 

45

0

07.0000,1£ dxeV x   

 
2 The Pensions Service is part of the Department 
for Work and Pensions. Its website address is 
http://www.thepensionservice.gov.uk/ 
3 
http://www.thepensionservice.gov.uk/planningah
ead/start/when-should-i-save.asp 
 

 
Solving this we find that the final value 
of the plan for our individual, at which 
time she will be 68 years old, is 
£319,087. 

(26) 087.319*000,1£
07.0

1
000,1£

45*07.0








 e  

 
Now suppose that due to cash flow 
problems this person delays saving for 
15 years. Consider the impact this has 
on her yearly payment in order to 
deliver the same lump sum of £319,087 
when she is 68 years old.  

 
In our formula we know V = £319,087 
but T is now 30 since she will only save 
for 30 years. Therefore, 

(27)  
30

0

07.0087,319£ dxeA x  

We now solve for the definite integral on 
the RHS of (27) and make A the subject 
of the equation. 

(28) 117,3£
3739.102

087,319£
A  

The annual amount that would need to 
be saved is £3,117. By delaying saving 
our individual pays £3,117 for 30 years 
compared to £1,000 for 45 years so as 
to have the same final value. This 
amounts to an additional £48,510.4  
 
This is of course a simplified example. 
In reality pension contributions are 
seldom constant over time. Nonetheless, 
it goes to demonstrate that the Pensions 
Service advice to start saving early is 
sound advice indeed! 
 
Tasks 
Assume an individual saves £500 per 
year continuously for 30 years at an 
interest rate of 7.5%. 
(i) What is the final value of the plan? 
(ii) How much must the individual 

save each year in an equivalent 
plan of 20 years so that it has the 
same final value? 

(iii) Compare the total payments made 
in the 30 and 20 year plans. 

 
4 The total payment in the 45 year plan is 
£45,000, but £93,510 in the in the 30 year plan. 
 


